

天津市地方计量技术规范

JJF(津)04—2020

实时荧光定量 PCR 仪校准规范

Calibration Specification for Real-Time Fluorescent Quantitative

Polymerase Chain Reaction Analyzer

2020-05-18 发布

2020-06-30 实施

天津市市场监督管理委员会 发布

实时荧光定量 PCR 仪 校准规范

JJF(津)04-2020

Calibration Specification for Real-Time Fluorescent Quantitative Polymerase Chain Reaction Analyzer

归口单位: 天津市市场监督管理委员会

主要起草单位: 天津市计量监督检测科学研究院

参加起草单位:军事医学研究院医学计量测试研究站

国家体育总局体育科学研究所

北京林电伟业电子技术有限公司

本规范主要起草人:

李时鑫 (天津市计量监督检测科学研究院)

余松林 (天津市计量监督检测科学研究院)

田 昀 (天津市计量监督检测科学研究院)

魏树龙 (天津市计量监督检测科学研究院)

参加起草人:

王 喆 (天津市计量监督检测科学研究院)

张 辰 (军事医学研究院医学计量测试研究站)

宋雪阳 (国家体育总局体育科学研究所)

李 征 (北京林电伟业电子技术有限公司)

目 录

引言(III	[)
1 范围(1	1)
2 引用文件(1	1)
3 术语(1	1)
3.1 聚合酶链反应(1	1)
3.2 聚合酶链反应分析仪(1	1)
3.3 实时荧光定量聚合酶链反应分析仪(1	1)
3.4 温度示值误差(1	1)
3.5 温度均匀度(1	1)
3.6 温度最大过冲量(1	1)
3.7 平均升温速率(2	2)
3.8 平均降温速率(2	2)
3.9 荧光染料	2)
3.10 荧光强度精密度(2	2)
3.11 阈值循环数(2	2)
3.12 阈值循环数精密度(2	2)
3.13 熔解温度(2	2)
3.14 熔解曲线(2	2)
3.15 熔解温度漂移(2	<u>2</u>)
3.16 峰值强度(2	2)
3.17 通道峰值强度一致性	2)
3.18 线性灵敏系数(3	3)
3.19 熔解温度比	3)
4 概述	3)
5 计量特性	3)
6 校准条件	1)
6.1 环境条件	1)

JJF(津)04—2020

6.2	测量标准和其它设备
7 核	逐准项目和校准方法(5)
7.1	校准项目
7.2	校准方法
8 核	E准结果表达(11)
9 复	E校时间间隔
附录	A 荧光定量 PCR 仪校准原始记录参考格式(13)
附录	B 荧光定量 PCR 仪校准证书内页参考格式(16)
附录	C 温度示值误差和阈值循环数示值误差测量结果的不确定度评定示例(17)

引 言

本规范依据 JJF1071-2010《国家计量校准规范编写规则》和 JJF1001-2011《通用计量术语及定义》的要求编写,依据 JJF1059.1-2012《测量不确定度评定与表示》给出了温度和阈值循环数示值误差测量结果的不确定度评定示例。计量特性等主要参考了 YY/T1173-2010《聚合酶链反应分析仪》。

本规范为首次发布。

实时荧光定量 PCR 仪校准规范

1 范围

本规范适用于实时荧光定量聚合酶链反应分析仪的校准。

2 引用文件

本规范引用下列文件:

YY/T1173-2010 聚合酶链反应分析仪

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。

3 术语

YY/T1173-2010 中界定的及以下术语和定义适用于本规范。

3.1 聚合酶链反应 polymerase chain reaction, PCR。

聚合酶链反应是一种对特定的 DNA 或 RNA 片段在体外进行快速扩增的方法,由变性—退火—延伸三个基本反应步骤构成。(YY/T1173-2010)

- 3.2 聚合酶链反应分析仪 (polymerase chain reaction analyzer, PCR analyzer) 基于 PCR 技术原理,模拟 DNA 或者 RNA 的复制过程,在模板、引物、聚合酶等存在的条件下,特异扩增已知序列,对其进行检测分析的仪器设备。(YY/T1173-2010)
- 3.3 实时荧光定量聚合酶链反应分析仪 real-time fluorescent quantitative PCR analyzer, RT-PCR analyzer。

可以实现 DNA 或者 RNA 的扩增,并根据 PCR 过程中荧光染料释放的荧光强度的变化对扩增产物量进行定量分析的仪器设备。

3.4 温度示值误差 temperature indication error

在温度技术指标校准程序中,实时荧光定量 PCR 分析仪均热块设定温度与所有采 样测量孔温度平均值之差。

3.5 温度均匀度 temperature uniformity

在温度技术指标校准程序中,实时荧光定量 PCR 分析仪均热块所有采样测量孔温度平均值的最大值与最小值之差。

3.6 温度最大过冲量 temperature maximum overshoot

在温度技术指标校准程序中,荧光定量 PCR 仪均热块温度升高或降低至设定值过程中,所有采样测量孔温度超出设定值的最大幅度。

3.7 平均升温速率 mean heating rate

在温度技术指标校准程序中,实时荧光定量 PCR 仪均热块升温过程中,所有采样测量孔单位时间上升的平均温度值。

3.8 平均降温速率 mean cooling rate

在温度技术指标校准程序中,实时荧光定量 PCR 仪均热块降温过程中,所有采样测量孔单位时间下降的平均温度值。

3.9 荧光染料 fluorochrome

短波长激发光激发后,能够释放出可见光的试剂。(YY/T1173-2010)

3.10 荧光强度精密度 precision of fluorescence intensity 均热块测量孔在同一荧光条件下荧光强度重复测量值的一致性。(YY/T 1173-

2010)

3.11 阈值循环数 threshold cycle

均热块测量孔内的荧光信号到达指数扩增时经历的循环周期数。主要的计算方式是以扩增过程前 3 到 15 个循环的荧光值的 10 倍标准差为阈值,当荧光值超过阈值时的循环数则为阈值循环数。(YY/T 1173-2010)

- 3.12 阈值循环数精密度 precision of threshold cycle 均热块测量孔在同一荧光条件下阈值循环数重复测量的一致性。
- 3.13 熔解温度 (melt temperature, *Tm*) 全总 DNA 双螺旋结构降解一半时的温度称为熔解温度。
- 3.14 熔解曲线 melt curve

PCR 过程中均热块测量孔的荧光强度(纵坐标)与温度(横坐标)形成的曲线。

3.15 熔解温度漂移 melt temperature bias

实时荧光定量 PCR 仪校准时,根据熔解曲线计算的熔解温度值与光学模拟器熔解温度设定值之差。

3.16 峰值强度 peak intensity

熔解曲线上熔解温度对应的荧光强度。

3.17 通道峰值强度一致性 (channel peak intensity consistency, *CPHC*)

熔解曲线上, 所有采样测量孔峰值强度的变化趋势。

- 3.18 线性灵敏系数 (linear sensitivity factor, *LSF*) 同一熔解温度下,表征熔解曲线线性变化灵敏程度的比率。
- 3.19 熔解温度比 (ratio of melt temperature, RTm) 同一熔解温度下,表征熔解温度飘移因素的比率。

4 概述

实时荧光定量 PCR 仪,全称为实时荧光定量聚合酶链反应分析仪(real-time fluorescent quantitative PCR analyzer, RT-PCR,以下简称荧光定量 PCR 仪)是通过实时监测随整个 PCR 进程而变化的荧光信号强度,同时通过标准曲线对扩增基因进行定量分析的仪器。标记有荧光染料的探针与模板基因混合后,完成高温变性、低温复性和适温延伸的热循环后,与模板基因互补配对的探针被切断,荧光染料游离于反应体系中,在特定光激发下荧光染料发出荧光,随着循环次数的增加,被扩增的目的基因片段呈指数规律增长,通过实时检测与之对应的随扩增而变化荧光信号强度,既可对待测扩增基因进行定量分析。

荧光定量 PCR 仪均热块一般有 32 孔板、48 孔板、96 孔板和 384 孔板等几种类型,其中 96 孔板应用最为广泛。如图 1 所示,其主要由温度控制模块、微量荧光检测模块、均热块、电脑控制系统、计算机及应用软件组成。

图 1 荧光定量 PCR 仪结构示意图

5 计量特性

荧光定量 PCR 仪计量性能指标如表 1 所示。

表 1 荧光定量 PCR 仪计量性能指标

序号	项目		技术指标	备注
1	温度示值误差	30℃ 50℃	± 0.5℃	
2	温度均匀度	60℃ 70℃	≤1.0°C	温度项目
3	温度最大过冲量	90℃ 95℃	≤3.0°C	
4	平均升温速率	50°C→90°C	≥1.5°C/s	温度项目
5	平均降温速率	90℃→50℃	≥1.5℃/s	一
6	阈值循环数示值误差	<u>4</u>	±2.5	
7	阈值循环数均匀度		≤ 5	
8	阈值循环数精密度		≤10%	
9	通道峰值强度一致性	Ė	± 0. 2	光学系 <mark>统物</mark> 理项目
10	线性灵敏系数		± 0. 2	
11	熔解温度飘移		±1°C	
12	熔解温度比		± 0. 2	
13	荧光强度精密度		≤5 %	
14	样本测量精密度		≤3%	光学系统生
15	荧光线性相关系数		≥0.990	物化学项目
16	样本线性相关系数		≥0.980	

6 校准条件

6.1 环境条件

环境温度: (15~30) ℃; 相对湿度: (20~85) %RH。

其它: 仪器应远离振动、电磁干扰。

6.2 测量标准和其它设备

6.2.1 光学模拟器

光学模拟器集成了温度传感器和发射光发生器两部分。其温度测量范围为(0~120)℃,最大允许误差为±0.1℃,发射光发生器的波长范围为(360~780)nm,相对光辐射强度在(10%~100%)范围内可调。

6.2.2 标准物质

校准时应采用国内外有证标准物质,包括:质粒 DNA 标准物质、核糖核酸标准物质,其特性量值(拷贝数≥10° copi es/μL,相对扩展不确定度≤5%)。

6.2.3 移液器

规格: 2 μ L、10 μ L、100 μ L、200 μ L、1000 μ L, 且需要计量检定合格。

7 校准项目和校准方法

7.1 校准项目

可根据客户要求与实际情况选择光学系统物理校准方法或光学系统生物化学校准方法其中一种对荧光定量 PCR 仪进行校准。

选择光学系统物理方法对荧光定量 PCR 仪进行校准时,校准项目为温度项目和光学系统物理项目。

选择光学系统生物化学方法对荧光定量 PCR 仪进行校准时,校准项目为温度项目和光学系统生物化学项目。

7.2 校准方法

7.2.1 校准前的准备工作

将荧光定量 PCR 仪及光学模拟器各部件连接完好,光学模拟器为集成传感器,下方为温度传感器,上方为荧光发射光源。在光学模拟器下方温度传感器表面上涂抹适量导热油,以确保其与均热块测量孔接触良好。如图 2 所示,将 7 个光学模拟器分布于均热块测量孔中。

图 2 7个光学模拟器位置分布示意图

7.2.2 校准过程

按照仪器说明书设置校准程序。典型的校准设置程序如表 2 所示。程序运行结束后,读取标准值和测量值。校准程序步骤 1 到步骤 3 为预热程序,步骤 4 到步骤 11 为温度技术指标校准程序(其中 30℃的温度指标测量数据来源于步骤 6;平均升、降温速率的测量数据分别来源于步骤 4 到步骤 5 和步骤 5 到骤 6)。步骤 12、13 为光学模拟器光学扩增程序,荧光定量 PCR 仪在步骤 12 和步骤 13 设定程序之间循环 32 次。

1上.7取	11. 今 A 庄	+± /+ n+ i=1	友 yè
步骤	设定温度点	持续时间	备注
1	30°C	60s	
2	95°C	60s	预热程序
3	30°C	60s	
4	30°C	60s	
5	95°C	180s	
6	30°C	120s	
7	90°C	180s	温度技术指标校准程序
8	50°C	180s	血/又1又/下1目/小仪1出往/广
9	70°C	180s	
10	60°C	180s	
11	30°C	180s	
12	85°C	10s	模拟光学扩增程序: 在 85°C/60°C之间循环 32
13	60°C	30s	次,同时进行光学检测。
14	95°C	15s	扩增变性程序
15	60°C	30s	熔解曲线分解程序
16	95°C	15s	

表 2 校准设置程序

7.2.3 温度示值误差

温度示值误差的计算按照公式(1)计算:

$$\Delta \mathsf{T} = T_{s} - \frac{1}{7} \sum_{i=1}^{7} \overline{T}_{i} \tag{1}$$

式中: ΔT ——采样测量孔温度示值误差, \mathbb{C} ;

 T_s ——采样测量孔的设定温度值,℃;

 \overline{T}_i ——第 i 个测量孔的温度平均值, \mathbb{C} 。

7.2.4 温度均匀度

温度均匀度的计算按照公式(2)计算:

$$\Delta T_u = \bar{T}_{umax} - \bar{T}_{umin} \tag{2}$$

式中: ΔT_u ——采样测量孔内温度均匀度, \mathbb{C} ;

 \bar{T}_{umax} ——所有采样测量孔温度最大平均值, \mathbb{C} ;

 \bar{T}_{umin} ——所有采样测量孔温度最小平均值, \mathbb{C} ;

7.2.5 温度最大过冲量

图 3(a)和图 3(b)分别为单个采样测量孔温度上升和下降至设定温度点的温度最大过冲量示意图。均热块所有采样测量孔内温度最大过冲量的计算按照公式(3)计算:

$$\Delta T_{os} = |T_{osmax} - T_s| \tag{3}$$

式中: ΔT_{os} ——采样测量孔内温度最大过冲量, \mathbb{C} ;

 T_{osmax} ——所有采样测量孔测定温度最大过冲值, \mathbb{C} ;

 T_s ——采样测量孔的设定温度值,℃。

图 3 单个采样测量孔温度上升、下降至温度设定值时温度最大过冲量示意图

7.2.7 平均升温速率

平均升温速率是指在温度技术指标校准程序中,荧光定量 PCR 仪均热块所有采样测量孔从 50°C升温至 90°C过程中,单位时间内上升的平均温度值,按公式(4)计算 50°C \rightarrow 90°C 的平均升温速率:

$$V_{UT} = \frac{\overline{T_B} - \overline{T_A}}{t_{UT}} \tag{4}$$

式中: V_{UT} — 采样测量孔内平均升温速率, \mathbb{C}/s ;

 $\overline{T_B}$ ——90℃温度点所有采样测量孔的温度平均值, \mathbb{C} ;

 $\overline{T_A}$ ——50℃温度点所有采样测量孔的温度平均值, \mathbb{C} ;

t_{ut}——从 50℃温度点到达 90℃温度点的时间, S。

7.2.8 平均降温速率

平均降温速率是指在温度技术指标校准程序中,荧光定量 PCR 仪均热块所有采样测量孔从 90° 降温至 50° 过程中,单位时间内下降的平均温度值,按公式(5)计算 90° 0° 0° 的平均降温速率:

$$V_{DT} = \frac{\overline{T_B} - \overline{T_A}}{t_{DT}} \tag{5}$$

式中: V_n — 平均降温速率, ℃/s;

 t_{DT} ——从 90 ℃ 温度点到达 50 ℃ 温度点的时间,s。

7.2.9 阈值循环数示值误差、均匀度和精密度

阈值循环数 C_t 示值误差的计算按照公式(6)计算, C_t 均匀度的计算按照公式

(7) 计算, C_t 精密度按照公式(8)计算(n为光学模拟器数量,n=7)

$$\Delta C_{ti} = C_{tqi} - C_{ts} \tag{6}$$

$$\Delta C_{tu} = C_{tqmax} - C_{tqmin} \tag{7}$$

$$RSD_{C_t} = \frac{1}{\sum_{i=1}^{n} C_{tqi}} \times \sqrt{\frac{\sum_{i=1}^{n} (C_{tqi} - \sum_{i=1}^{n} C_{tqi})^2}{n-1}} \times 100\%$$
 (8)

式中: ΔC_{ti} — 第i个采样测量孔 C_t 值示值误差;

 C_{tqi} ——第i个采样测量孔荧光信号达到阈值时荧光定量 PCR 仪实测的 C_t

值;

 C_{ts} ——荧光信号达到阈值时光学模拟器实际经历的 C_t 值;

 ΔC_{tu} —— C_t 值均匀度;

 C_{tqmax} ——所有采样测量孔荧光信号达到阈值时荧光定量 PCR 仪实测的 C_t 最大值;

 C_{tqmin} ——所有采样测量孔荧光信号达到阈值时荧光定量 PCR 仪实测的 C_t 最小值:

 RSD_{C_t} —— C_t 值精密度。

7.2.10 通道峰值强度一致性、线性灵敏系数

当 DNA 循环扩增时从最大荧光强度 100%逐渐减弱到 20%过程中,理论上荧光定量 PCR 仪接收到的荧光强度也线性递减。计算熔解曲线上熔解温度 (*Tm*) 附近的温度点对应的荧光强度可得到通道峰值强度一致性 (*CPHC*) 和线性灵敏系数 (*LSF*), 其值分别按照公式 (9)、公式 (10) 计算:

$$CPHC_i = \frac{B_i - C_i}{\overline{B} - \overline{C}} \tag{9}$$

$$LSF_i = \frac{A_i - B_i}{B_i - C_i} \tag{10}$$

式中: CPHC;——第i个采样测量孔通道峰值强度一致性;

 B_i ——第i个采样测量孔熔解曲线上(Tm-2)℃对应的荧光强度;

 C_i ——第i个采样测量孔熔解曲线上(Tm+2) ℃对应的荧光强度;

 \bar{B} ——所有采样测量孔熔解曲线上(Tm-2) $^{\circ}$ 乙对应的荧光强度平均值;

 \bar{c} ——所有采样测量孔熔解曲线上(Tm+2) $^{\circ}$ ℃对应的荧光强度平均值;

LSF_i——第i个采样测量孔线性灵敏系数;

 A_i ——第i采样测量孔熔解曲线上 Tm \mathbb{C} 对应的荧光强度。

7.2.11 熔解温度漂移和熔解温度比

熔解温度漂移(ΔTm)的计算按照公式(11)计算,熔解温度比(RTm)的计算按照公式(12)计算。

$$\Delta T m_i = T m_i - T m_s \tag{11}$$

$$RTm = \frac{Tm_{max} - Tm_{min}}{t_{max} - t_{min}} \tag{12}$$

式中: $\Delta T m_i$ — 第i 个采样测量孔熔解温度漂移, ℂ;

 Tm_i ——第i个采样测量孔荧光定量 PCR 仪实测的 Tm 值,ℂ;

 Tm_s ——光学模拟器的 Tm 设定值,ℂ;

RTm——熔解温度比;

 Tm_{max} ——所有采样测量孔荧光定量 PCR 仪实测的 Tm 最大值,℃;

 Tm_{min} ——所有采样测量孔荧光定量 PCR 仪实测的 Tm 最小值, \mathbb{C} ;

 t_{max} ——设定 Tm 时,所有采样测量孔光学模拟器测量的最大温度值, \mathbb{C} ;

 t_{min} ——设定 Tm 时,所有采样测量孔光学模拟器测量的最小温度值, \mathbb{C} 。

7.2.12 荧光强度精密度

在荧光 PCR 仪均热块测量孔数量范围内,选取n个测量孔(一般 $n \ge 6$)。分别将配制高、中、低浓度的标准荧光染料溶液置入选取的测量孔中进行一次测量,光学系统收集各测量孔的荧光强度。按照公式(14)计算荧光强度精密度。

$$RSD_{\rm F} = \frac{1}{\sum_{i=1}^{n} F_i} \times \sqrt{\frac{\sum_{i=1}^{n} (F_i - \sum_{i=1}^{n} F_i)^2}{n-1}} \times 100\%$$
 (14)

式中: RSD_F ——荧光强度精密度;

 F_i ——第i采样测量孔单次测得的荧光强度。

7.2.13 样本测量精密度

选用配套使用的标准荧光染料对高、中、低浓度 DNA 标准物质进行检测,每一浓度重复检测 6 个测量孔,按照公式(15)计算 C 值的样本测量精密度。

$$RSD_{S} = \frac{1}{\sum_{i=1}^{6} S_{i}} \times \sqrt{\frac{\sum_{i=1}^{6} (S_{i} - \sum_{i=1}^{6} S_{i})^{2}}{n-1}} \times 100\%$$
 (15)

式中: RSDs——样本测量精密度;

 S_i ——第i采样测量孔单次测得的 C_i 值、

7.2.14 荧光线性相关系数

将已知浓度标准荧光染料梯度稀释后(至少稀释 5 个梯度)进行测量,每种浓度重复测量n次取其平均值(一般取n=3),按公式(16)计算线性相关系数 r_F :

$$r_F = \frac{\sum_{i=1}^{n} (x_{Fi} - \overline{x_F})(y_{Fi} - \overline{y_F})}{\sum_{i=1}^{n} (x_{Fi} - \overline{x_F})^2 \sum_{i=1}^{n} (y_{Fi} - \overline{y_F})^2}$$
(16)

式中: $r_{\rm F}$ — 荧光线性相关系数;

 x_{Fi} ——各个浓度梯度荧光染料第i次实验的标准值;

 $\overline{x_F}$ ——各个浓度梯度荧光染料n次实验的标准平均值;

 y_{Fi} ——各个浓度梯度荧光染料第i次实验的测量值,

 $\overline{y_F}$ ——各个浓度梯度荧光染料n次实验的测量值平均值。

7.2.15 样本线性相关系数

将已知浓度 DNA 标准物质稀释后(至少稀释 5 个梯度)进行测量,每种浓度重复测量n次取其平均值(一般取n=3),按公式(17)计算样本线性相关系数 $r_{\rm S}$:

$$r_{S} = \frac{\sum_{i=1}^{n} (x_{Si} - \overline{x_{S}})(y_{Si} - \overline{y_{S}})}{\sum_{i=1}^{n} (x_{Si} - \overline{x_{S}})^{2} \sum_{i=1}^{n} (y_{Si} - \overline{y_{S}})^{2}}$$
(17)

式中: r_s——荧光线性相关系数;

 x_{si} ——各个浓度梯度标准物质第i次实验的标准;

 $\overline{x_S}$ ——各个浓度梯度标准物质n次实验的标准平均值;

 y_{Si} ——各个浓度梯度标准物质第i次实验的测量值;

 $\overline{v_s}$ ——各个浓度梯度标准物质n次实验的测量平均值。

8 校准结果表达

经校准的荧光定量 PCR 仪出具校准证书,校准证书至少应包括以下信息:

- a) 标题"校准证书";
- b) 实验室名称和地址;
- c)进行校准的地点(如果与实验室的地址不同);
- d)证书的唯一性标识(如编号),每页及总页数的标识:
- e) 客户的名称和地址;
- f)被校对象的描述和明确标识:
- g) 进行校准的日期;
- h) 校准所依据的技术规范的标识,包括名称及代号;
- i) 本次校准所用测量标准的溯源性及有效性说明;
- i)校准环境的描述:
- k) 校准结果及其测量不确定度的说明:
- 1)对校准规范的偏离的说明;
- m) 校准证书或校准报告签发人的签名、职务或等效标识;
- n) 校准人和核验人签名;
- o) 校准结果仅对被校对象有效性的声明;
- p) 未经实验室书面批准, 不得部分复制校准证书的声明

9 复校时间间隔

建议复校间隔时间为一年。

附录 A

荧光定量 PCR 仪校准原始记录参考格式

送校信息:

送校单位:		校准地点:			
生产单位:	规格型号:		出厂编号:		

校准信息:

校准证书编号:		校准依据:	校准依据:			
环境温度:	$^{\circ}\! \mathbb{C}$	环境湿度:	%RH			

标准标准信息:

标准器名称	型号规格	出厂编 号	不确定度/ 准确度等级	证书编号	有效日期
标准物质名称	型号规格	批号	量值特性/ 不确定度	证书编号	有效日期

一、温度示值误差和温度均匀度

设定 温度 点		采样	温度 示值 误差 (°C)	温度 均匀度 (℃)					
(℃)	(A1)	(A7)	(A12)	(D7)	(H1)	(H7)	(H12)		
30									
50									
60									
70		·		·		·			
90									
95									

二、温度最大过冲量、平均升温速率和平均降温速率

设定温度点(℃)	30	50	60	70	90	95
温度最大过冲量 (℃)						

JJF(津)04—2020

平均升温速率(℃/s)	50°C→90°C	
平均降温速率(℃/s)	90℃→50℃	

三、 C_t 值示值误差、 C_t 值均匀度和 C_t 值精密度(光学系统物理项目)

类别		光学模拟器不同分布位置测量的 C _t 值								C _t 值 精密
	(A1)	(A7)	(A12)	(D7)	(H1)	(H7)	(H12)	示值 误差	均匀 度	度
荧光 定量 PCR 仪										
光学 模拟 器										

四、CPHC、LSF、ΔTm 和 RTm (光学系统物理项目)

Tm i	没定 ℃	Tm (℃)	ΔTm (°C)	А	В	С	A-B	В-С	СРНС	LSF	RTm
光	(A1)										
学档	(A7)										
光学模拟	(A12)										
器	(D7)										
分布位	(H1)										
位	(H7)										
置	(H12)										
平均	9值								/		

五、荧光强度精密度(光学系统生物化学项目)

标准荧光 染料溶液 浓度	不同采样测量孔实测值						平均值	荧光强度 精密度(%)

六、样本测量精密度(光学系统生物化学项目)

标准物质 溶液浓度	不同	同采样测量孔实测值				平均值	样本测量 精密度(%)

七、荧光线性相关系数(光学系统生物化学项目)

标准荧光 染料溶液 标准值 浓度	标准 平均值	实测值	实测 平均值	荧光线 性相关 系数
				$\setminus \setminus$
				//

八、样本线性相关系数(该光学系统生物化学项目与光学系统物理项目可选择其中一种)

样本物质 溶液浓度	标准值	标准 平均值	实测值	实测 平均值	样本线性 相关系数

附录 B

荧光定量 PCR 仪校准证书内页参考格式

一、温度项目标	交准结果					
设定温度点 (℃)	30	50	60	70	90	95
温度示值误差						
(℃)						
温度均匀度						
(℃)						
温度最大过冲 量(℃)						
平均升温速率	(°C/ S)	50℃	→90°C			
平均降温速率			→50°C			
二、光学系统物						
C _t 值示值	直误差	0	;值均匀度		C _t 值精密度	(%)
		St. W. I	tt lot du A. A. A. B.			
项目 (A1)	(A7)	光字(A12)	莫拟器分布位置 (D7) (H1	VALUE OF THE PARTY	(H12)	平均值
CPHC	(A7)	(A1Z)	(U/) (III) (117)	(1112)	1
LSF						'
RTm						
三、光学系统生	物化学项目	校准结果				
	标	准荧光染料溶	液浓度	测	量数值(%)	
荧光强度						
精密度						
	1					
		标准物质溶液	浓度	狈	量数值(%)	
样本测量精密度						
(%)						
	Σ */r					
安元线性相关系 样本线性相关系						
1十平线 注相大为	下刻					
 1、温度示值误	差的扩展不适	毎定度・/ <i>L</i> -	°C, <i>k</i> =2;			
2、 <i>C</i> _t 值示值误			k=2			
		H/C/X• 0	, , 20			
l						

附录 C

温度示值误差和阈值循环数示值误差测量结果的不确定度评定示例

C.1 温度示值误差不确定度评定

C.1.1 测量方法

将荧光定量 PCR 仪及光学模拟器各部件连接完好,光学模拟器为集成传感器,下方为温度传感器,上方为荧光发射光源。在光学模拟器下方温度传感器表面上涂抹适量导热油,以确保其与均热块测量孔接触良好。如图 2 所示,将 7 个光学模拟器分布于均热块测量孔中。温度示值误差的计算按照公式(C. 1. 1)进行计算。

C.1.2 测量模型

$$\Delta T = T_s - \frac{1}{7} \sum_{i=1}^{7} T_i \tag{C.1.1}$$

式中: ΔT ——测量孔内温度示值误差,ℂ;

 T_s ——测量孔的设定温度值,ℂ;

 \overline{T}_i ——第 i 个测量孔的测定温度平均值, \mathbb{C} 。

C.1.3 不确定度来源

根据上述数学模型及测量方法,其不确定度来源主要包括以下三个方面:

- a) 测量重复性引入的标准不确定度 u_1 ;
- b) 光学模拟器温度传感器分辨力引入的标准不确定度分量u';
- c) 光学模拟器温度传感器测温精度引入的标准不确定度分量 u_2 ;

各分量中,由于 u_1 和 u_1' 存在一定关联,计算中取两者较大者。 u_2 与其它两个分量互不相关。

C.1.4 测量不确定度评定

C. 1. 4. 1 重复性测量引起的不确定度分量 u

以温度示值误差最大的 95℃为例,对同一台荧光定量 PCR 仪,在相同的测量条件下,使用推荐的设定程序运行 10 个循环,温度稳定后 7 温度传感器的重复测量数据见表 C.1.1。

表 C.1.1 温度测量结果

94.63

94.75

94.89

94.82

	• •							
不同测量点的温度传感器测量结果(℃)								
3	4	5	6	7	8			

95.02

95.26

95.31

95.03

10 94.98 94.88 94. 80 95. 02 94.95 94.76 94. 79 94.97 95.11 94.79 94.89 94.71 94.90 94.74 94.89 94.99

94.98

95.01

94.89

94.85

94.92

94.86

94.76

95.17

94.89

94.81

94.82

94.88

94.76

94.99

94. 78

95.11

合并样本标准偏差 S_p 按公式(C.1.2)计算:

94.97

94.82

95.03

95.18

94.99

94.71

95.08

95.23

$$S_p = \sqrt{\frac{\sum_{j=1}^m \sum_{k=1}^n (y_{kj} - \overline{y_j})^2}{m(n-1)}}$$
 (C. 1. 2)

式中:

次数

测量点

(A1)

(A7)

(A12)

(D7)

(H1)

(H7)

1

94. 91

94.83

95.18

94.85

95.21

95.21

2

94.72

94.86

94.73

94.99

95.02

95.12

m ——测量点的数量;

n ——每个测量点包含的测量次数;

 y_{ki} ——第 j 个测量点第 k 次的测量值, \mathbb{C} ;

 y_i ——第j个测量点测量值的算术平均值,℃。

通过(C.1.2)计算出合并样本标准偏差如下:

$$S_p = 0.152$$
°C

由于每个测量点实际记录 1 次(n=1),因此重复测量引入的不确定度分量 u_1 为:

$$u_1 = \frac{S_p}{\sqrt{n}} = \frac{0.152}{\sqrt{1}} = 0.152$$
°C

C. 1. 4. 2 光 学 模 拟 器 温度传感器分辨力引入的不确定度u',

光学模拟器温度传感器的分辨力为 0.01 \mathbb{C} ,分散区间半宽为 0.005 \mathbb{C} ,按均匀 分布计算,则

$$u_1' = \frac{0.005}{\sqrt{3}} = 0.003$$
°C

由于重复测量引入的标准不确定度分量 u_1 大于光学模拟器温度传感器分辨力引入的标准不确定度分量 u_1' ,两者具有一定的相关性,因此在不确定度计算时不考虑由读数分辨力引入的标准不确定度分量 u_1' 。

C.1.4.3 光学模拟器温度传感器引入的不确定度 u_2

光学模拟器温度传感器的最大允许误差±0.1 ℃,按均匀分布计算,则

$$u_2 = \frac{0.1}{\sqrt{3}} = 0.058$$
°C

C.1.5 标准不确定度分量一览表

标准不确定度分量如表 C.1.2 所示。

表 C.1.2 温度示值误差测量结果标准不确定度分量一览表

标准不确定度分量	灵敏度系数	不确定度来源	标准不确定度(℃)
u_1	-1	测量重复性	0. 152
u_2	-1	温度传感器测量精度	0.058

C.1.6 合成标准不确定度 u_c

$$u_c = \sqrt{u_1^2 + u_2^2} = 0.163$$
°C

C. 1. 7 扩展不确定度 *U*

取
$$k=2$$
, 则: $U = k \times u_c = 0.33$ °C

C.2 阈值循环数测量结果不确定度评定

C. 2.1 测量方法

将荧光定量 PCR 仪及光学模拟器各部件连接完好,光学模拟器为集成传感器,下方为温度传感器,上方为荧光发射光源。在光学模拟器下方温度传感器表面上涂抹适量导热油,以确保其与均热块测量孔接触良好。如图 2 所示,将 7 个光学模拟器分布于均热块测量孔中。阈值循环数 *C* 示值误差的计算按照公式(C. 2. 1)计算。

C. 2. 2 测量模型

$$\Delta C_{ti} = C_{toi} - C_{ts} \tag{C.2.1}$$

式中:

 ΔC_{ti} ——第i个采样测量孔 C_t 值示值误差;

 C_{tai} ——第i个采样测量孔荧光信号达到阈值时实测的 C_t 值;

 C_{ts} ——荧光信号达到阈值时光学模拟器实际经历的 C_t 值。

C.2.3 不确定度来源

根据上述数学模型以及测量方法,其不确定度来源主要包括以下三个方面:

- a)测量重复性引入的标准不确定度 u_1 ;
- b) 光学模拟器分辨力引入的标准不确定度 u_1' ;
- c)标准器具引入的标准不确定度 u_2 ;

C.2.4 测量不确定度评定

C. 2. 4. 1 重复性测量引起的不确定度分量 u

对同一台荧光定量 PCR 仪,在相同的测量条件下,使用光学模拟器按照推荐的光学扩增程序对其 C_1 值连续进行 10 次重复测量,对重复测量结果进行分析,7 个采样测量孔的测量结果如表 C_1 2.1 所示:

	次数	C. 值测量结果									
测量	点	1	2	3	4	5	6	7	8	9	10
	(A1)	11. 99	11.66	11. 82	11. 72	11. 71	11.82	11.89	11. 76	11.89	11.83
实时	(A7)	11.64	11.86	11. 77	11. 41	11. 89	11. 65	11. 58	11.74	11.85	11. 78
荧	(A12)	11. 21	11.44	11. 32	11. 35	11. 44	11. 45	11. 32	11. 38	11. 36	11. 56
光定	(D7)	11. 36	11. 52	11. 57	11. 68	11. 71	11. 52	11. 38	11. 39	11.42	11. 47
量	(H1)	11. 18	11. 12	11. 23	11. 25	11. 24	11. 37	11. 36	11. 37	11.31	11. 37
PCR 仪	(H7)	11.54	11. 23	11. 37	11. 42	11. 42	11.56	11. 58	11. 47	11.43	11. 38
	(H12)	11. 75	11. 66	11. 71	11. 71	11. 77	11.84	11. 69	11.72	11.71	11.74
	(A1)	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50
, t.	(A7)	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50
光学	(A12)	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50
模	(D7)	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50
拟器	(H1)	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50
	(H7)	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50
	(H12)	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50	11.50

表 C.2.1 Ct值测量结果

以(A1)采样测量孔为例,10次测量数据的标准偏差 S_p 按公式 C. 2. 2 计算:

$$S_p = \sqrt{\frac{\sum_{i=1}^n (y_i - \overline{y})^2}{(n-1)}}$$
 (C. 2. 2)

式中: n ——测量次数;

 y_i ——第i次测量值, \mathbb{C} ;

 \bar{y} ——n次测量值的算术平均值, $^{\circ}$ C;

这里 n=10, 通过 (C. 2. 2) 计算得出:

$$S_n = 0.099$$

由于每个采样测量孔实际测量时只测 1 次,因此重复测量引入的不确定度分量 u_1 为:

$$u_1 = \frac{S_p}{\sqrt{n}} = \frac{0.099}{\sqrt{1}} = 0.099$$

C. 2. 4. 2 光学模拟器分辨力引入的不确定度u

光学模拟器的分辨力为 0.01,分散区间半宽为 0.005,按均匀分布计算,则

$$u_1' = \frac{0.005}{\sqrt{3}} = 0.003$$

由于重复测量引入的标准不确定度分量 u_1' 大于分辨力引入的标准不确定度分量 u_1' ,两者具有一定的相关性,因此在不确定度计算时不考虑由读数分辨力引入的标准不确定度分量 u_1' 。

C.2.4.3 标准器具引入的不确定度 u_2

需要考虑光学模拟器温度传感器最大允许误差引入的不确定度分量 u_T 和发射光发生器发光强度测量不确定度引入的不确定度分量 u_L 。

光学模拟器的温度传感器的最大允许误差±0.1℃,最小温度测量点30℃时引入的不确定度最大,PCR 扩增光学模拟器的测量平均值为11.5,按均匀分布计算,则:

$$u_T = \frac{0.1}{\sqrt{3} \times 30} \times 11.5 = 0.022$$

光学模拟器的发射光发生器的发光强度可溯源至分光光度计,通过查询,分光光度计在波长范围($380\sim860$)nm 内发光强度的扩展不确定度 U=9.5% (k=2),光学模拟器的测量平均值为 11.5,则:

$$u_L = \frac{9.5\%}{2} \times 11.5 = 0.546$$

由于 u_T 和 u_I 之间相互独立,则

$$u_2 = \sqrt{u_T^2 + u_L^2} = 0.546$$

C.2.5 标准不确定度分量一览表

标准不确定度一览表见表 C.2.2。

表 C.2.2 Ct 值测量结果标准不确定度一览表

标准不确定度分量	灵敏度系数	不确定度来源	标准不确定度 (℃)
u_1	1	测量重复性	0.099
u_2	-1	光学模拟器	0. 546

C.2.6 合成标准不确定度 u_c

$$u_c = \sqrt{u_1^2 + u_2^2} = 0.555$$

C.2.7 扩展不确定度 U

取 k=2,则: $U = k \times u_c = 1.2$